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Kuhn Length Excluded Volume 

Thermal Blob Size Correlation Length 

Entanglements 

To obtain the packing number Pe and the degree 
of polymerization between entanglements Ne, 
we must renormalize for concentrations above  

**. We define two parameters: 

        g =  

so that  

        Ne = Pe
2gg 

and  

         =  

such that the normalized specific viscosity is a 
universal function of the normalized number of 

correlation blobs per chain, Nw/gg: 

         

 

1, 

( **)−3/2, 

 * <  ≤  ** 

 ** <    

1, 

g
-2/3, 

 * <  ≤  ** 

 ** <    



Polyelectrolytes (Charged Polymers) 
If the initial slope is exactly 0.5, the solution is salt-free. 

Normalize the viscosity by Nw 0.5, and Bpe = Cp
-2/3. If the 

initial slope is between 0.5 and 1.31, normalize the viscos-

ity by Nweff
0.5 = Nw 

0.5(1+2cs/f *c)-0.75, where cs is the salt 

concentration and f * is the fraction of free counterions.  

Scaling Analysis Molecular Parameters 

See Macromolecules 1995, 28, 1859–1871 

Specific Viscosity 

In this example, we demonstrate two polymer/

solvent systems (squares and circles), each with 

two samples of different molecular weights (green 

> grey, red > blue). 

 

To calculate the structural parameters, we need: 

• weight-average degree of polymerization, Nw 

• repeat unit projection length, l 

• average repeat unit molar mass, M0 

 

l = 2.55Å l  = 3.38Å l  = 5.4Å 

Concentration 
We define the dimensionless 

concentration 

         = cl3NA/M0  

where NA is Avogadro’s num-

ber and c is the concentration 

in units of mass per volume. 

Correlation blobs with size  

     = lg/B  

contain g monomers, 

where exponent  = 0.588 

and B = Bg for good sol-

vents and  = 0.5 and B = 

Bth at length scales small-

er than the thermal blob 

size Dth or for  solvents.  

Copolymers 
When calculating M0 for copol-

ymer solutions (e.g., polyelec-

trolytes, substituted functional 

groups) it is important to accu-

rately determine the average 

monomer molar mass. 

Intrinsic solution properties 

Kuhn length b = lBth
-2 

Excluded volume v = l3Bth
-3(Bth/Bg)

1/(2-1)
 

Crossover concentrations 

Overlap concentration  * = Bg
3 N 1-3 for good solvents, 

 * = Bth
3 N –1/2 for  solvents 

Crossover between Bth and Bg regimes  

th = Bth
3(Bth/Bg)

1/(2-1) 

Concentration at which  = b,  ** = Bth
4 

Blob sizes 

Thermal blobs with size Dth = l Bth
2 th

-1 contain  

gth = Bth
6/th

2 monomers 

Correlation blob size  = l B1/(3-1)  /(1-3)  

Obtain the value of 
the plateau, Cp, from 
the normalized viscosi-
ty for good solvent 
systems. The parame-

ter Bg = Cp 1/3- is relat-
ed to the monomer 
excluded volume, v. 

Rouse Bg regime 

Good solvent systems 
with shorter chains 
can cross over into the 
thermal blob overlap 
regime. The parame-
ter Bth = Cp -1/6 is relat-
ed to the Kuhn length, 

b.  solvents start in 
this regime. 

Rouse Bth regime 

If there is a plateau in 
this plot for good sol-
vent systems, the 
solution entangles 
before crossing into 
the Bth regime (green 
squares). An upturn 
indicates that the solu-
tion is in the entan-
gled Bth regime. 

Entangled regime 


