Entanglements

To obtain the packing number $P_{\rm e}$ and the degree of polymerization between entanglements $N_{\rm er}$, we must renormalize for concentrations above φ^{**} . We define two parameters:

$$\lambda_{\rm g} = \begin{cases} 1, \quad \varphi^* < \varphi \le \varphi^{**} \\ (\varphi/\varphi^{**})^{-3/2}, \quad \varphi^{**} < \varphi \end{cases}$$

so that

$$N_{\rm e} = P_{\rm e}^2 g \lambda_{\rm g}$$

and

$$\lambda = \begin{cases} 1, \quad \varphi^* < \varphi \le \varphi^{**} \\ \lambda_{g}^{-2/3}, \quad \varphi^{**} < \varphi \end{cases}$$

such that the normalized specific viscosity is a universal function of the normalized number of correlation blobs per chain, $N_w/g\lambda_x$:

 N_w/N_e

References

Derivations

Macromolecules **2021**, *54*, 1859–1869 *Macromolecules* **2021**, *54*, 2288–2295

Examples

Macromolecules **2021**, *54*, 9577–9586 ACS Polym. Au **2021**, *1*, 196–205 ACS Appl. Polym. Mater. **2022**, ASAP

Kavassalis-Noolandi Conjecture

Phys. Rev. Lett. **1987**, *59*, 2674–2677 Macromolecules **1988**, *21*, 2869–2879 Macromolecules **1989**, *22*, 2709–2720

Rubinstein-Colby Scaling

Macromolecules **1990**, *23*, 2753–2757 Statistical Physics of Macromolecules. AIP Press: 1994 Macromolecules **2008**, *41*, 8903–8915

Website: dobryninlab.unc.edu Emails: saykor@email.unc.edu mjacobs9@email.unc.edu

Dobrynin Group Caudill Labs

UNC at Chapel Hill

Room 108

How to Analyze Polymer Solutions with Rheology

Dobrynin Research Group UNC at Chapel Hill Department of Chemistry

dobryninlab.unc.edu

Specific Viscosity

In this example, we demonstrate two polymer/ solvent systems (squares and circles), each with two samples of different molecular weights (green > grey, red > blue).

To calculate the structural parameters, we need:

- weight-average degree of polymerization, $N_{\rm w}$
- repeat unit projection length, /
- average repeat unit molar mass, M₀

Correlation blobs with size

contain g monomers,

where exponent v = 0.588

and $B = B_g$ for good sol-

vents and $\mathbf{v} = 0.5$ and $\mathbf{B} =$

B_{th} at length scales small-

er than the thermal blob

size $D_{\rm th}$ or for θ solvents.

 $\xi = lg^{\nu}/B$

Scaling Analysis

Intrinsic solution properties

Kuhn length $b = lB_{\rm th}^{-2}$

Excluded volume $v = l^3 B_{\text{th}}^{-3} (B_{\text{th}}/B_g)^{1/(2\nu-1)}$

Crossover concentrations

Overlap concentration $\varphi^* = B_g^3 N^{1-3\nu}$ for good solvents, $\varphi^* = B_{th}^3 N^{-1/2}$ for θ solvents

Crossover between $B_{\rm th}$ and $B_{\rm g}$ regimes $\varphi_{\rm th} = B_{\rm th}^{-3} (B_{\rm th}/B_{\rm g})^{1/(2\nu-1)}$

Concentration at which $\xi = b_{\ell} \varphi^{**} = B_{th}^4$

Blob sizes

Thermal blobs with size $D_{\text{th}} = l B_{\text{th}}^2 \varphi_{\text{th}}^{-1}$ contain $g_{\text{th}} = B_{\text{th}}^6 / \varphi_{\text{th}}^2$ monomers

Correlation blob size $\xi = l B^{1/(3\nu - 1)} \varphi^{\nu/(1-3\nu)}$

Concentration

We define the dimensionless concentration

 $\varphi = cl^3 N_A/M_0$ where N_A is Avogadro's number and c is the concentration in units of mass per volume.

Copolymers

When calculating M_0 for copolymer solutions (e.g., polyelectrolytes, substituted functional groups) it is important to accurately determine the average monomer molar mass.

Molecular Parameters

Rouse *B*_g regime

Obtain the value of the plateau, $C_{\rm pr}$, from the normalized viscosity for good solvent systems. The parameter $B_{\rm g} = C_{\rm p}^{-1/3-\nu}$ is related to the monomer excluded volume, ν .

Rouse *B*_{th} regime

Good solvent systems with shorter chains can cross over into the thermal blob overlap regime. The parameter $B_{\rm th} = C_{\rm p}^{-1/6}$ is related to the Kuhn length, *b*. θ solvents start in this regime.

Entangled regime

If there is a plateau in this plot for good solvent systems, the solution entangles before crossing into the $B_{\rm th}$ regime (green squares). An upturn indicates that the solution is in the entangled $B_{\rm th}$ regime.

Polyelectrolytes (Charged Polymers)

If the initial slope is exactly 0.5, the solution is salt-free. Normalize the viscosity by $N_w \varphi^{0.5}$, and $B_{\rm pc} = C_{\rm p}^{-2/3}$. If the initial slope is between 0.5 and 1.31, normalize the viscosity by $N_w \varphi_{\rm eff}^{0.5} = N_w \varphi^{0.5} (1+2c_s/f^*c)^{-0.75}$, where c_s is the salt concentration and f^* is the fraction of free counterions. See *Macromolecules* **1995**, *28*, 1859–1871