Skip to main content

Maria Ina, Zhen Cao, Mohammad Vatankhah-Varnoosfaderani, Matthew H. Everhart, William F. M. Daniel, Andrey V. Dobrynin, and Sergei S. Sheiko

Abstract Image

Fundamental understanding of rigid particle indentation into soft elastic substrates has been elusive for decades. In conventional heterogeneous and multicomponent systems, the ill-defined interplay between elastic and capillary forces has confounded explanation of the crossover region between the classical wetting and adhesion regimes. Herein, we study the indentation behavior of micrometer-sized silica particles on supersoft, solvent-free PDMS elastomers with brush-like network strands. By varying the side chain grafting density and the cross-linking density of the networks, we control their elastic modulus from ∼1 to 100 kPa without adding solvent. This isostructurally regulated balance between elastic and capillary forces allows for accurate mapping of the entire range of particle–substrate interactions by measuring indentation depth as a function of substrate stiffness and particle radius. A generalized theoretical model, accounting for the collaborative contribution of both forces to the system free energy, demonstrates excellent quantitative agreement with our experimental results as well as with results of computer simulation for particles in contact with soft surfaces.

Read Article

Comments are closed.